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Abstract. The addition to the Hubbard Hamiltonian of a t′ diagonal hopping term, which is considered
to be material dependent for high-Tc cuprate superconductors, is generally suggested to obtain a model
capable to describe the physics of high-Tc cuprate materials. In this line of thinking, the two-dimensional
t-t’-U model has been studied by means of the Composite Operator Method, which allows to determine
the dynamics in a fully self-consistent way by use of symmetry requirements, as the ones coming from the
Pauli principle. At first, some local quantities have been calculated to be compared with quantum Monte
Carlo data. Then, the structure of the energy bands, the shape of the Fermi surface and the position of the
van Hove singularity have been computed as functions of the model parameters and studied by the light
of the available experimental data. The results of our study show that there exists two sets of parameters
that allows the model to describe the relevant features of the 1-layer compounds Nd2−xCexCuO4 and
La2−xSrxCuO4. On the other hand, for the 2-layer compound YBa2Cu3O7−δ is not possible to find a
reasonable set of parameters which could reproduce the position of the van Hove singularity as predicted
by ARPES experiments. Hence, it results questionable the existence of an unique model that could properly
describe the variety of cuprate superconductors, as the two-dimensional t-t’-U model was thought to be.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.10.w Theories and models
of many-electron systems – 71.27.+a Strongly correlated electron systems: heavy fermions

1 Introduction

Since the discovery of high-Tc superconductivity there has
been a great deal of discussion about the choice of an ef-
fective model suitable to describe the properties of the
copper-oxide planes in the perovskite structure. Exten-
sive studies of the magnetic properties, showing one spin
degree of freedom in the Cu-O plane [1], have resulted in
considerable evidence that the high-temperature super-
conductors may be modeled by an effective single-band
model. According to this, one of the most studied model
is the single-band Hubbard model which indeed can quali-
tatively describe many physical properties experimentally
observed in copper-oxide compounds.

The addition of a finite t′ diagonal hopping term, that
appears to be material dependent for high-Tc cuprate
superconductors, has often been suggested to handle
the complexity of the experimental situation for the
cuprates [2–4]. Moreover, an electron-hole asymmetry in
the next-nearest-neighbor hopping term, combined with
a perfect symmetry of all the other effective parame-

a e-mail: avella@sa.infn.it

ters, emerges from various reduction procedures of multi-
component electronic models and seems to distinguish the
cuprates from a general charge-transfer insulator [5,6]. It
has been argued that this asymmetry is responsible for the
stabilization (destabilization) of antiferromagnetic order
for electron doping (hole doping) [7], whereas the spatial
distribution of the doped carriers [8] and the damping of
quasi particles [9] have been shown to be very sensitive to
the sign of t′. A finite t′ has been found to be essential
in reproducing various experiments (magnetic structure
factor [10,11], flat quasi particle dispersion and shape of
the Fermi surface [12] which in turn are responsible for
various anomalous normal state properties, sign change in
the Hall effect [13], photoemission data [14], the behavior
of the resistivity with temperature [14], the symmetry of
the pairing state [15], the actual value of the critical tem-
perature for the optimal doping concentration [5,6]). In
addition, the sign of t′ seems to be relevant for the thermo-
dynamics, in agreement with more general arguments [16]
that the propagation within one sublattice without spin
flip allowed by a non zero t′ would significantly change
the physics. Therefore, the next-nearest-neighbor hopping
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parameter t′ emerges as the single parameter, which car-
ries, at the level of the single band description, the infor-
mation about crystal structure outside the Cu-O planes
and thus differentiates between the various cuprates [5,6].

According to this, we have decided to study the two-
dimensional t-t’-U model to analyze if it could properly
describe the variety of cuprate superconductors.

In recent years much attention has been paid to the
physics of electronic systems (e.g., cuprates, manganites,
heavy fermions) with unconventional metallic properties.
It is generally believed that the origin of this anomalous
metallic behavior is due to strong electron correlations
in narrow conduction bands [17]. In this line of think-
ing many analytical methods have been developed for the
study of strongly correlated electron systems [18]. A paral-
lel approach to the study of these systems is based on the
use of numerical methods [15]. The numerical techniques
are now very well developed and many results on finite-
dimension lattices are available; these results are certainly
a guide for the construction of a microscopical theory and
to them in any case the different theoretical formulations
must refer.

In the last years we have been developing a
method of calculation, denominated Composite Operator
Method [19–25] (COM), which has been revealed to be
a powerful tool for the description of local and itinerant
excitations in strongly correlated electronic systems. The
method is based on the observation that the original field
operators, in terms of which the interacting Hamiltonians
are expressed, are not a convenient basis. Then, a crucial
point is the identification of a set of composite operators
that could describe the quasi-stable excitations which are
supposed to be present in the system. The choice of a non-
standard operator basis generates some parameters not
directly connected to the single particle Green’s function.
Unlikely other approaches, the presence of these parame-
ters is not inconvenient because it opens the possibility to
bind the dynamics in a suitable Hilbert space, reabsorb-
ing the symmetries which might be lost when some ap-
proximations are made. In particular, by using relations
with the content of the Pauli principle [19,20], we are al-
lowed to fix the dynamics of the system in a fully self-
consistent way without recurring to factorization or other
procedures [26–28]. In a physics dominated by the inter-
play between the charge and the magnetic configurations,
we think that the Pauli principle should play an important
role. Furthermore, the recovery of the Pauli principle, usu-
ally violated by other approximations, assures us that the
hole-particle symmetry is satisfied and that the dynamics
is bound to the right Hilbert space. In fact, the symme-
try dictated by the Pauli principle and that coming from
the hole-particle symmetry are intimately connected, so
that the violation of the former implies the violation of
the latter, and vice versa [20]. In this paper, we apply the
method to the t-t’-U model; preliminary results have been
given in reference [29], to which we will often refer, and
the study of the magnetic properties have been given in
reference [22].

The plan of the paper is as follows. In Section 2 we
present the two-dimensional t-t’-U model and its prop-
erties. Within the framework of the COM, in Sections 3
and 4 we choose a suitable basic composite field and de-
rive the expression of its propagator. In Section 5 we
present the comparison of our analytical results for some
local properties with numerical ones obtained by means of
the quantum Monte Carlo method on a finite size lattice
[2,30]. In Section 6 we show the results obtained for the
structure of the energy bands, the shape of the Fermi sur-
face and the relative position of the van Hove singularity
with respect to the Fermi level as functions of the model
parameters. We have paid particular attention to the com-
parison with the experimental data available for the su-
perconducting cuprates. In Section 7 some conclusions are
given.

2 The model

The two-dimensional t-t’-U model is described by the fol-
lowing Hamiltonian:

H =
∑
ij

tij c
†(i) c(j) + U

∑
i

n↑(i)n↓(i)− µ
∑
i

n(i)

(2.1)

where c†(i) =
(
c†↑(i), c

†
↓(i)
)

is the electron operator on the
site i in the spinor notation, nσ(i) is the charge-density op-
erator for the spin σ and n(i) is the total charge-density
operator. The hopping matrix tij has the following expres-
sion

tij = −4t αij − 4t′ βij (2.2)

with

α(k) =
1
2

[cos(a kx) + cos(a ky)]

β(k) = cos(a kx) cos(a ky) (2.3)

as Fourier transforms of αij and βij . These latter represent
the projectors on the nearest and next-nearest neighbors,
situated along the plaquette diagonals, respectively. a, the
lattice constant, will be set to 1. The U parameter repre-
sents the intrasite Coulomb potential and µ the chemical
potential. Throughout the paper, we will express all the
energies in units of t and the latter will be set to 1.

This model does not enjoy the hole-particle symmetry
owing to the presence of the t′ term, that, under the hole-
particle transformation [c†(i) → (−1)i c(i)], changes its
sign:

µ (n, t′) = U − µ (2− n,−t′) . (2.4)

3 The basic field

Let us introduce the following basic field:

ψ(i) =
(
ξ(i)
η(i)

)
=
(

(1− n(i)) c(i)
n(i) c(i)

)
(3.1)
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where the composite electron operators ξ(i) and η(i) rep-
resent the n(i) = 0↔ 1 and the 1↔ 2 restricted electronic
transitions, respectively. They make up the so-called
Hubbard operator doublet [c(i) = ξ(i) + η(i)]. These two
composite electron operators are well recognized to be re-
sponsible for the main distribution of the electron density
of states for the Hubbard model from both analytical and
numerical calculations [15].

The field ψ satisfies the following equation of motion
obtained from the Hamiltonian (2.1):

i
∂

∂t
ψ(i) =

(
−µξ(i) +

∑
j tijc (j) + π(i)

− (µ− U) η(i)− π(i)

)
(3.2)

where the operator π has the following form

π(i) =
∑
j

tij

(
1
2
σµnµ(i)c (j) + c(i)

(
c† (j) c(i)

))
. (3.3)

The following definitions have been used

σµ = (1,σ) σµ = (−1,σ) nµ(i) = c†(i)σµc(i) (3.4)

with 1 and σ being the unity and the three Pauli ma-
trices respectively and nµ(i) representing for µ = 0 the
total charge- and for µ = 1, 2, 3 the spin- density opera-
tor for the site i. In equation (3.3) and in the ones that
will follow the summation with respect to greek indices is
understood.

4 The Green’s function

The properties of the system are conveniently expressed
in terms of the single particle retarded thermal Green’s
function:

S (k, ω) =
〈
R
[
ψ(i)ψ† (j)

]〉
F.T.

(4.1)

where 〈 〉F.T. is the Fourier transform of the thermal av-
erage and R [ ] indicates the retarded time-ordered prod-
uct. In the framework of the COM and neglecting finite
life-time effects [19] we have

S (k, ω) =
1

ω −m (k) I−1 (k) + iδ
I (k) . (4.2)

By considering a paramagnetic state with roto-
translational invariance, I(k) has the explicit expression:

I (k) =
〈{
ψ(i), ψ† (j)

}〉
F.T.

=
(

1− n
2 0

0 n
2

)
(4.3)

n being the thermal average of the total charge-density
operator [n = 〈n(i)〉]. Moreover, m(k) is defined as

m (k) =
〈{

i
∂

∂t
ψ(i), ψ† (j)

}〉
F.T.

. (4.4)

From equation (4.4) direct calculations give

m11 (k) = −µ
(

1− n

2

)
− 4t [∆+ α (k) (1− n+ p)]

− 4t′ [∆′ + β (k) (1− n+ p′)] (4.5a)

m12 (k) = m21 (k) = 4t
[
∆− α (k)

(n
2
− p
)]

+ 4t′
[
∆′ − β (k)

(n
2
− p′

)]
(4.5b)

m22 (k) = − (µ− U)
n

2
− 4t (∆+ α (k) p)

− 4t′ [∆′ + β (k) p′] (4.5c)

with

∆ =
〈
ξα(i)ξ†(i)

〉
−
〈
ηα(i)η†(i)

〉
(4.6a)

∆′ =
〈
ξβ(i)ξ†(i)

〉
−
〈
ηβ(i)η†(i)

〉
(4.6b)

p =
1
4
〈
nαµ(i)nµ(i)

〉
−
〈

[c↑(i)c↓(i)]
α
c†↓(i)c

†
↑(i)
〉

(4.6c)

p′ =
1
4
〈
nβµ(i)nµ(i)

〉
−
〈

[c↑(i)c↓(i)]
β
c†↓(i)c

†
↑(i)
〉

. (4.6d)

We are using the following notation

ζα(i) =
∑
j

αijζ (j) ζβ(i) =
∑
j

βijζ (j) · (4.7)

The internal parameters ∆, ∆′, p and p′, as the chemi-
cal potential µ, have to be calculated in order to obtain the
fermionic propagator as a function of the external parame-
ters t, t′, U , n and T (temperature). In the COM they are
determined by solving a system of coupled self-consistent
equations. Three equations come from the existing rela-
tions between the parameters n, ∆ and ∆′ and the Green’s
function matrix elements. The other two equations have
been chosen in order to satisfy the Pauli principle at the
level of matrix elements〈

ξ(i)η†(i)
〉

= 0. (4.8)

This last equation has been split in two by exploiting the
independence of t and t′ parameters.

5 The local properties and the comparison
with numerical results

5.1 The chemical potential

We have calculated the chemical potential µ as a func-
tion of the external parameters using the system of self-
consistent equations described in Section 4. We have com-
pared our results with the ones obtained by means of the
quantum Monte Carlo method [2] on a finite size lattice
8× 8. The agreement is very good for U = 4 (cf. Fig. 1 of
Ref. [29]).
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Fig. 1. Critical value of the filling nD as a function of the in-
trasite Coulomb potential U for T = 0.01 and t′ = −0.2, 0, 0.2.

The quantum Monte Carlo data present a plateau for
n ≈ 1.3. This plateau is completely absent in our curve
and is related to a finite size effect [31]. Moreover, the
opening of the antiferromagnetic gap, due to a spin den-
sity wave instability [31], does not allow us to reproduce
the behavior near half-filling where our solution is para-
magnetic; this remark will also reflect on the comparison
done with the double occupancy data.

5.2 The double occupancy

The double occupancy D, defined as the probability to
have a couple of electrons (↑↓) on the same site, can be
calculated through the following equation

D = 〈n↑(i)n↓(i)〉 =
1
2
〈
η†(i)η(i)

〉
. (5.1)

We have compared our results with the ones obtained
by means of the quantum Monte Carlo method [2] on a
finite size lattice 8× 8 (cf. Fig. 3 of Ref. [29]). In the low-
filling region our solution presents a characteristic feature,
the existence of a critical value of the filling nD(U) before
which the double occupancy is almost zero [n ≤ nD(U)].
The small residual is due to the thermal fluctuations. This
kind of behavior seems to be absent in the quantum Monte
Carlo data at finite temperature, but it might be inferred
from the zero temperature data for the chemical poten-
tial [32]. We do not exclude the possibility that this feature
could be an artifact of the two-pole approximation. Other
analytical approaches do not exhibit such a behavior. See,
for instance, reference [33] where a better agreement with
the numerical data, as regards the behavior of the double
occupancy as function of the filling, is found.

The explanation of this behavior of the double occu-
pancy can be given as the existence of two regimes: one in
which the low-filling let the carriers the possibility to move
freely and avoid the high-energetic double occupancy of
some sites and another one in which the number of carri-
ers excludes the possibility to avoid the double occupancy.
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n
Fig. 2. Energy per site E as a function of the filling n for
t′ = −0.2, T = 0.25 and U = 4, 6, 8.

Obviously, this value of the filling, which marks the chang-
ing of regime, depends strongly on the value of the U
and t′ parameters, see Figure 1. As it should be expected,
nD(U) increases by increasing U , owing to the larger en-
ergy needed to doubly occupy a site, and decreases by
changing the sign of t′ from negative to positive, owing to
the resulting smaller mobility.

5.3 The energy per site

The internal energy per site E can be written as

E = K + V (5.2)

where

K =
1
N

∑
σ

∑
ij

tij
〈
c†σ(i)cσ (j)

〉
(5.3a)

V = U
1
N

∑
i

〈n↑(i)n↓(i)〉 = UD (5.3b)

are the kinetic and the potential energies, respectively.
The behavior of the internal energy per site E follows

that of the kinetic energy K for low values of the filling,
where the double occupancy is almost zero, whereas it
follows that of the potential energy V for values of the
filling greater than nD(U), see Figure 2. This can be easily
inferred by looking at the U dependence: we have a very
little dependence for any filling smaller than nD(U). This
kind of behavior has been also found by means of quantum
Monte Carlo method calculations [34,35] and slave-boson
ones [36] giving a further confirmation about the presence
of a region of the filling where the double occupancy has
a very small value. To clarify this issue, other numerical
data, in particular at lower temperatures are needed.

We can compute the internal energy through an alter-
native way. By introducing the Helmholtz free energy per
site

F = E − TS (5.4)
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Fig. 3. Internal energy per site E as a function of (t′)
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for
n = 1, T = 0.01 and U = 4.

where S is the entropy per site, from the Thermodynamics
we have

S = −∂F
∂T


K ′ = −1

4
∂F

∂t′
∂S

∂t′
= 4

∂K ′

∂T

µ =
∂F

∂n

∂S

∂n
= − ∂µ

∂T

(5.5)

where K ′ =
〈
c†(i)cβ(i)

〉
. Then, it is straightforward to

obtain the following formulas

F (T ) = −4
∫ t′

0

K ′(T ) dt̃′ +
∫ n

0

µt′=0(T ) dñ

(5.6a)

S(T ) = 4
∫ t′

0

∂K ′(T )
∂T

dt̃′ −
∫ n

0

∂µ(T )
∂T

∣∣∣∣
t′=0

dñ

(5.6b)

E(T ) = −4
∫ t′

0

(
K ′(T )− T ∂K

′(T )
∂T

)
dt̃′

+
∫ n

0

(
µt′=0(T )− T ∂µ(T )

∂T

∣∣∣∣
t′=0

)
dñ.

(5.6c)

In this alternative scheme the thermodynamic quantities
are all expressed through the single-particle Green’s func-
tion. In principle both ways are equivalent to each other
and must lead to the same results, but when approxima-
tions are involved, the situation drastically changes and
different results can be obtained [37].

We have compared [37] these two schemes of calcula-
tion to each other (i.e., comparing the values of the free
energy) and with the numerical schemes (i.e., Lanczos and
quantum Monte Carlo). The results obtained by means of
the alternative scheme usually correspond to a lower free
energy. Moreover, they are by far in better agreement with
the numerical data.

In this paper, we have compared our results, computed
by means of the alternative scheme, with the ones ob-
tained by means of the projector quantum Monte Carlo

0.0 0.5 1.0
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-0.4

-0.6
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T = 0.01

 COM
 qMC L = 8
 qMC L = 6
 qMC L = 4E

t'2

Fig. 4. Internal energy per site E as a function of (t′)
2

for
n = 1, T = 0.01 and U = 8.

method [30] on a finite size lattice, see Figures 3 and 4.
The agreement is very good in the region where (t′)2 is
greater than 0.5 for both values of the U parameter. In
the other region [(t′)2 ≤ 0.5] the spin density wave insta-
bility found by the authors does not allow us to reproduce
the results. As it should be expected in a paramagnetic
phase, the energy per site E lowers as (t′)2 increases ow-
ing to the consequential increment of the absolute value
of the kinetic energy.

6 The single-particle properties
and the description of the cuprates

In the framework of the COM, the Fourier transform of
the single particle retarded thermal Green’s function, see
equation (4.2), may be rewritten as:

S (k, ω) =
2∑
i=1

σ(i) (k)
ω −Ei (k) + iδ

(6.1)

where σ(1),(2)(k) are given by

σ
(i)
11 (k) =

I11

[
2Q (k) + (−)i+1

∆Σ (k)
]

4Q (k)
(6.2a)

σ
(i)
12 (k) = σ

(i)
21 (k) = (−)i+1 m12 (k)

2Q (k)
(6.2b)

σ
(i)
22 (k) =

I22

[
2Q (k) + (−)i∆Σ (k)

]
4Q (k)

(6.2c)
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with

Q (k) =
1
2

√[
U − m12 (k)

I11I22

]2

+ 2nU
m12 (k)
I11I22

(6.3a)

R (k) =
1
2

[U − 2µ− 8tα (k)− 8t′β (k)]

− 1
2
m12 (k)
I11I22

(6.3b)

∆Σ (k) = (1− n)
m12 (k)
I11I22

− U . (6.3c)

E1,2(k) represent the energy bands and have the following
expressions:

Ei (k) = R (k) + (−)i+1
Q (k) . (6.4)

According to this, the Fermi surface of the system may
be defined as E2 (k) = 0 and the electronic density of
states, N(ω), may be computed through the following for-
mula:

N(ω) =
1

2π2

2∑
i,j,l=1

∫
dkσ(i)

jl (k) δ [ω −Ei (k)] (6.5)

where the integration has to be performed over the first
Brillouin zone. The presence of two bands gives a structure
of the density of states characterized by two logarithmic
van Hove singularities.

6.1 The energy bands and the van Hove singularity

Both band structure calculations and experiments gener-
ally find that the Fermi level is close to the van Hove
singularity at the optimal doping (δc) for the ma-
jority of the multi-layer cuprate superconductors, like
YBa2Cu3O7−δ (YBCO), Bi2Sr2Ca1Cu2Oδ (Bi-2212) and
Hg compounds [12,38,39].

In particular, for YBCO the relative distance (∆E) be-
tween the Fermi level and van Hove singularity has been
found to be within 6 meV for its optimal doping stoichio-
metric concentration [40] (δYBCO

c ≈ 0.15).
For the electron-doped Nd2−δCexCuO4 (NCCO), it

has been found a value of ∆E of ≈ 200 meV for its optimal
electron-doping concentration [41] (δNCCO

c ≈ 0.15).
So far, the available photoemission results [42–44] for

the La2−xSrxCuO4 (LSCO) agree with the experimental
data for the static susceptibility [45], the electronic spe-
cific heat and the entropy [46] after which the van Hove
singularity seems to coincide with the Fermi level at the
critical doping (xc) at which the superconductivity disap-
pears (xLSCO

c ≈ 0.3). A comprehensive discussion about
this issue can be found in reference [21], where many ex-
perimental results for LSCO are reviewed and possibly
explained within the framework of the COM.

More generally, the experimentally derived disper-
sions of the Cu-O plane anti-bonding bands for a se-
ries of cuprates (Bi-2212, YBCO, Bi2Sr2CuOδ (Bi-2201),
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Fig. 5. Critical filling nc as a function of the t′ and U param-
eters for T = 0.01.

YBa2Cu4O8, NCCO) show a remarkable similarity to one
another with the van Hove singularity appearing near the
Y -point (0, π) of the Brillouin zone [47].

The value of the t′ parameter is crucial in determin-
ing the structure of the energy bands and therefore the
relative position of the van Hove singularity with re-
spect to the Fermi level. The critical value of the filling
(nc

.= 1−δYBCO
c

.= 1−xLSCO
c ) for which the van Hove sin-

gularity of the lower band coincides with the Fermi level,
has the behavior shown in Figure 5 as a function of the
t′ and U parameters. nc has been computed by studying
the density of states, see equation (6.5), as a function of
the filling n for fixed values of the t′ and U parameters.
Figure 5 contains a complete information about the struc-
ture and the doping evolution of the density of states and
therefore permits a comprehensive comparison between
the experimental situation and the physics described by
the t-t’-U model. The primary, but absolutely not unique,
effect of a positive (negative) value of t′ is to lower (rise)
the value of the energy at point Γ and along the line
X-Y ; as direct consequence, the number of available states
in the lower Hubbard subband increases (decreases). This
also explains the virtual rotation that the Fermi surface
seems to perform as a function of t′, for fixed values of
doping and Coulomb interaction (see Fig. 8).

The critical value of the filling (n′c
.= 1 + δNCCO

c ), that
corresponds to the coincidence of the upper band van Hove
singularity with the Fermi level can be obtained by the
one of the lower band through the following formula, that
comes directly from the particle-hole symmetry

n′c (U, t′) = nc (0, t′) + nc (0,−t′)− nc (U,−t′) . (6.6)

This critical value of the filling can be also interesting
with respect to the electron-doped compounds for which
the relevant band is the upper one.

We have studied the structure of the energy bands as
function of the model parameters. The results have shown
that it is possible to obtain a good agreement with the
experimental data by choosing reasonable sets of param-
eters. In particular, the value of ∆E for NCCO together
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with the shape of the energy band can be obtained by the
following set of parameters: U = 6, t′ = −0.4, see Fig-
ure 6. In the case of LSCO, we can obtain the right value
for xc by using the following set of parameters: U = 3,
t′ = −0.1, see Figure 7. In this figure we can observe
the coincidence between the van Hove singularity and the
Fermi level as required by the LDA calculations [48] and
experiments [42–46].

Finally, it can be easily seen from Figure 5, that it is
impossible to obtain the features suggested for YBCO un-
less to use a set of parameters like: U = 1, t′ = −0.4 with
a value of the U parameter really too small in compari-
son with the band calculation results [5,6]. Moreover, even
using this set of parameters, the relevant van Hove singu-
larity results to be the upper band one, in strict contra-
diction with the hole-doped nature of the compound. This
is due to the value of the t′ parameter necessary to obtain
the right bending of the Fermi surface after the ARPES
data [49]. A value of −0.4 for the t′ parameter gives a
value for the critical filling of the lower band van Hove

X

Μ

Γ

Y

Fig. 8. FS for t′ = −0.5→ 0.5, T = 0.01, n = 0.73 and U = 4.

singularity too small with respect to the optimal doping
concentration required by experimental data [49].

Independently to the chosen set of parameters the
van Hove singularity appears at the Y -point as in the
experiments.

6.2 The Fermi surface

The Fermi surface of the various cuprates are remarkably
similar one to another; in particular, photoemission exper-
iments show a large Fermi surface for a series of cuprates
at their optimal doping concentration [47] (Bi-2212,
Bi-2201, NCCO, YBCO).

Photoemission studies of NCCO find a hole-like and
roughly circular Fermi surface [41]. The apparent simplic-
ity of this Fermi surface is deceptive, since the transport
properties imply that the majority carriers are electron-
like.

Photoemission [42–44] and positron annihilation [50]
studies of the doping dependence of the Fermi surface for
the LSCO are consistent with a pseudo-nested hole-like
Fermi surface as predicted by LDA calculations [48] and
found by the COM for the simple Hubbard model [21].

The shape and, in particular, the bending of the Fermi
surface are strongly dependent on the value of the t′ pa-
rameter. The bending is electron-like for positive values
of t′ and hole-like for negative ones, independently on the
strength of the U parameter. This can lead for fixed values
of filling n and of the U parameter to a real rotation of the
Fermi surface by varying the value of the t′ parameter. In
Figure 8 we show the Fermi surface of the t-t′-U model
with U = 4, T = 0.01 and n ∼= 0.73 for values of the t′
parameter that range from −0.5 to 0.5 with step 0.1. The
chosen value of the filling corresponds to the critical value
nc for t′ = 0. The Fermi surface is open and hole-like for
t′ = −0.5. It is nested for t′ = 0. It is closed and electron-
like for t′ = 0.5. This gives the idea of a π

4 possible rotation
that can be driven by the t′ parameter.
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Γ X

ΜY

Fig. 9. FS for t′ = −0.4, T = 0.01, n = 1.15 and U = 6.

Γ X

ΜY

Fig. 10. FS for t′ = −0.1, T = 0.01, n = 0.7 and U = 3.

The critical value of the filling for which the Fermi sur-
face closes corresponds to the value for which the van Hove
singularity of the lower band coincides with the Fermi
level. The perfect nesting can be obtained only for a zero
value of the t′ parameter. Any non-zero value leads to a
pseudo-nesting as the Fermi surface, although closed, con-
serves some bending.

It is really relevant that the experimentally observed
Fermi surface for NCCO can be obtained, in our formu-
lation, by the same set of parameters that gives a cor-
rect band dispersion, see Figure 9. Moreover, it has to be
pointed out that the value of the t′ parameter capable to
reproduce the bending of the Fermi surface is in agreement
with the one predicted by band calculations [2].

In the case of LSCO, the same set of parameters al-
ready used to successfully describe the band dispersions
allows us to reproduce both the pseudo-nesting and the
hole-like bending of the Fermi surface as found by the
photoemission [42–44] and positron annihilation [50] ex-
periments and LDA calculations [50,48], see Figure 10.

7 Conclusions

Nowadays, the experimental situation for many physical
properties of cuprate high-Tc superconductors is well es-
tablished. This imposes strong constrains on the theoret-
ical models and/or adopted approximation schemes. The

band dispersions and the Fermi surface of a large series of
materials are today well-known.

We have studied the two-dimensional t-t’-U model, by
means of the Composite Operator Method to analyze the
possibility to handle the complexity of the experimental
situation for the cuprates. Using relations containing the
Pauli principle, we have been able to fix the dynamics in
a fully self-consistent way. Furthermore, the recovery of
the Pauli principle has assured us to satisfy the relations
coming from the particle-hole transformation. To check
our solution we have compared our results for the local
quantities with the ones coming from numerical schemes
with a very good agreement.

We have computed the structure of the energy bands,
the shape of the Fermi surface and the relative position of
the van Hove singularity. The comparison with experimen-
tal data has shown that the Hubbard model is capable to
describe both La2−xSrxCuO4 and Nd2−xCexCuO4, that
share the property to be 1-layer cuprates. On the con-
trary, it does not seem the case for YBa2Cu3O7−δ that is
a 2-layer cuprate. This can be read as a clear signal that
two-dimensional Hubbard-like models can play an impor-
tant role in describing the physics of the 1-layer cuprates
superconductors, but that the multi-layer ones need some
more complex models.

In conclusion, the t-t’-U model emerges as a minimal
model for 1-layer cuprate materials.
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